Orion spacecraft production continues for Artemis 2 and 3

by Philip Sloss

Electrical ground support equipment (EGSE) will be used to power up the Orion electronics that command and control spacecraft functionality. “We’re essentially making sure that the avionics associated with that functionally start up correctly,” Poliah said.

“So is it doing what it was supposed to be doing? And then we’ll be running a set of performance testing to say ‘is it performing the way it’s supposed to be performing?’ An analogy is ‘did the lights turn on when you flipped the switch?’ And then the performance is more of ‘is it as bright as it was supposed to be?’ when you flipped that switch.”

With the Artemis 2 Orion being the first full-up crewed configuration, Lockheed Martin will be functionally checking out the new systems in the Crew Module for the flight crew in addition to all the rest of the spacecraft systems. The core set of CM avionics will allow most of the functional checkouts to be completed, but eventually, the non-core set will be needed from the Artemis 1 vehicle.

“We have our big block of testing after our initial power-on that’s probably on the order of 10 to 12 weeks, and then when the non-core avionics come back, I think we have about another three to four weeks of testing that are planned,” Marasia said. “All this is planned into the schedule to take place to test those components out after they’re installed.”

“We have to wait until the [Artemis 1] Crew Module returns to here to Kennedy, but one of the very first things in the post-landing processing flow is to get those [non-core] avionics off. Some of the backshell panels have to come off to get some of the components; not the ones interior, but some of the antennas on the exterior.”

The Crew Module will also be integrated with its heatshield as a part of its final standalone assembly. Installation of all 186 blocks of Avcoat material to the heatshield was completed last year, and the heatshield assembly has since gone through thermal testing and application of sealant in the seams between all the blocks.

Credit: Philip Sloss for NSF.

(Photo Caption: The heatshield for the Artemis 2 Crew Module is seen in the O&C Building at KSC on November 5. Following additional inspections, painting, and taping, the heatshield will be fitted to the aft end of the Crew Module next year.)

“All the blocks are bonded and all the seams between the blocks are filled,” Marasia said. “[The sealant material is] an RTV (Room Temperature Vulcanizer) and phenolic material, so all the seams are sealed.”

“We’ve also gone through a thermal load test. So it went into the thermal chamber at ambient pressure and it was taken to a high temperature and a low temperature, and of course, it had a bunch of instrumentation on it, and actually, it came through really well. So it finished that testing, so now we basically have to scan all the blocks again after that thermal load testing.”

Marasia noted that those non-destructive evaluation (NDE) scans are currently in work. “Right now it’s undergoing ultrasonic testing scans of each of the blocks to make sure that the bondline is still good,” she said.

After functional testing, the Crew and Service Modules will go through some of the same standalone tests as the Artemis 1’s did before being mated. “Each module separately, CM and SM, will get a thermal cycle test,” Marasia said. “They’ll also get the direct field acoustic test (DFAT).”

If the Artemis 1 mission permits, following the electrical and computer/avionics installations, functional checkouts, and standalone testing, the Artemis 2 Crew and Service Modules (CSM) would be brought over to the Final Assembly System Test (FAST) cell in the O&C and mated in the middle of next year. “I looked at the schedule this morning, and I think it is in the summer of 2022 is when they both should be ready, like early to mid-summer when they will be mated,” she said. “I think this flow is about a 10-month flow for the SM.”

Following the CSM mate, the first crew-ready Orion will go through several months of integrated testing in the O&C Building. For Artemis 2 and beyond, instead of the thermal vacuum (T-Vac) testing at Plum Brook, the Orion spacecraft will get thermal cycle and vacuum testing at separate times in separate test cells in the O&C.

Credit: NASA/Radislav Sinyak.

(Photo Caption: The Artemis 2 Crew Module Adapter is lifted on October 19 into the workstation for mating to ESM-2, which can be seen on the left edge of the image. Lockheed Martin and NASA have improved access paths into the CMA following an issue with a Power and Data Unit on the Artemis 1 CMA at a point in processing where the PDU was no longer accessible without disassembling the Crew and Service Modules. In the future, the PDUs could be reached for maintenance by removing the outboard walls of the CMA, which were not installed in this image.)

“We have our thermal chamber, [and] we’ll test very extreme cold and hot cycles simulating seeing the Sun versus being in the dark when it’s in space,” Poliah said. “We’ll also be testing [in] the [vacuum] chamber, which we’ve been working pretty hard to renovate.”

“Those [chambers] haven’t been used since the Apollo days, and [after the renovation] we’re going to be using that to do vacuum testing.”

Current schedule projections show that Lockheed Martin will finish Orion integration for Artemis 2 and be ready to hand the spacecraft over to Exploration Ground Systems in the second half of 2023. “It’s about mid-summer of 2023 based on, again, we’re dependent on the Artemis 1 launch, so that’s where it’s falling out right now,” Marasia said.

It was about that time in the Artemis 1 flow when an issue came up with one of the two Power and Data Units (PDU) in the Crew Module Adapter. The PDU was inaccessible on the Artemis 1 spacecraft in the fully-assembled configuration, and NASA decided to fly with the issue as-is.

“The PDUs sit on the outer flange of the outer wall of the CMA, and they actually lean forward because there’s a cold plate behind them, so it’s just an accessibility issue, especially in the configuration that we were in [with the Artemis 1 spacecraft],” Stevenson explained.

“We were stacked and had the Crew Module on top, so we were in the CSM configuration. Looking at our configuration for Artemis 2, we don’t have the CM on top of it, so we would have accessibility if something had happened in this configuration. But because we had the Crew Module on, we lost access to the inner wall of the CMA, and that’s what made it more challenging.”

The donut-shaped CMA has an inner ring wall with longerons encircling it. There are face-sheet-like walls or panels on the forward and aft faces (or the top and bottom) and then also on the outside edge.

“We have the aft walls and the forward walls, and then we have the outboard walls. But even then we couldn’t access that,” Stevenson said. “We would have to take the outboard walls off, but the fact was we couldn’t get to the inner wall. It was still out of reach because you have the CM on top of the CMA and there was no way to get into the bolt that was inside already.”

Going forward, NASA and Lockheed Martin made changes to the design. “We can easily access the PDUs now, and so we did redesign for that anomaly,” Stevenson said. “So we’re definitely implementing lessons learned as we go and documenting that with every iteration that we do.”

“They did some design changes and came up with a solution for Artemis 2 [and beyond] so that in the event we have to take the PDUs out, we can do it [via] the outer wall. We don’t have to unscrew or unbolt anything from the inner wall of the CMA, everything is accessible from the outer wall now.”

“There’s no changes to the PDU, and there’s no changes to the inner wall of the CMA, either,” she added.

The timing of the Artemis 1 launch and mission will directly affect the Artemis 2 Orion’s schedule; if that permits, and Lockheed Martin was to reach the mid-summer 2023 date for handover to EGS, that would support launch readiness for Artemis 2 sometime between the very end of 2023 and the updated agency baseline commitment of no later than May 2024 that was publicly announced by the space agency on November 9.

Credit: NASA/Radislav Sinyak.

(Photo Caption: The Spacecraft Adapter (SA) cone is seen installed with the Artemis 1 Service Module in May 2019 during functional testing and checkout. The SA cone was connected and disconnected multiple times during the Artemis 1 processing flow; for Artemis 2, the adapter will only have to be installed once.)

The initial operating capability for Orion in its post-Constellation “Multi-Purpose Crew Vehicle” (MPCV) configuration would be with the Artemis 2 launch following Artemis 1 and the Exploration Flight Test-1 (EFT-1) mission prior. In September 2015, following the EFT-1 mission, the Orion Program had set the baseline commitment time frame for what is now Artemis 2 (then Exploration Mission-2) as no later than April 2023.

With significant changes to both the cost and schedule baselines previously established at that Key Decision Point-C (KDP-C) review in 2015, the new, no later than May 2024 time frame for the agency’s baseline commitment is NASA’s revised estimation of when the Orion Program will be ready to fly Artemis 2.

Artemis 3 structural hardware assembly

As the long final assembly sequence begins for Artemis 2, NASA and Lockheed Martin are also beginning structural assembly of the Crew Module and Crew Module Adapter for Artemis 3. The pressure vessel for the Artemis 3 Crew Module arrived at KSC in October from the Michoud Assembly Facility in New Orleans a few days after ESM-2 arrived from Bremen.

The central part of the Crew Module has since been installed in the “birdcage” tooling that will facilitate the installation of primary and secondary structural elements, which are also on-hand at KSC. “This is the first big piece, but obviously all the primary structures, so gussets, longerons, [and] things like that [are here],” Marasia said.

“All of that has been [delivered by] suppliers across the country and all of that stuff needed to be here before the pressure vessel so that we can start work on it right away, which we have.” The gussets and longerons and other elements will be installed on the pressure vessel while it is in the birdcage tool.

“It’s about three months to get the necessary primary structure and secondary structure that’s needed for that proof pressure test configuration,” Marasia noted. “That test configuration has to have certain components on it, so it’s about three months to get all those components on it. And then really after the first of the year is when it’s planned to go into that pressure test.”

Credit: Philip Sloss for NSF.

(Photo Caption: The pressure vessel at the center of the Artemis 3 Crew Module is seen in its “birdcage” structural assembly tool in the O&C Building on November 5. Much work is involved in evolving the passive pressure vessel structure into an active spacecraft machine. The remainder of the primary structure and some secondary structural elements will be installed while in the birdcage tool, after which the structure will be moved into the proof test cell in the O&C for the proof pressure test sometime early in 2022.)

Marasia also noted that the structural build of the Artemis 3 CMA is also in progress. “It’s already in work as well,” she said. “We have the inner wall barrel [set up], and they’re already installing frames and longerons onto it.”

The Orion Program and Lockheed Martin are working to ramp up to the production rate goal of an annual spacecraft delivery for launch, which will see at least three spacecraft in process simultaneously. “It’s going to be even busier than this eventually,” Marasia said.

“Once we get past these first few and get into really the production cycle, we will have a mated CSM down at the end, and we will have another two sets, two Crew Modules and two Service Modules in flow.”

Lead image credit: Mack Crawford.

Related Articles